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Learning progression-based assessments
• In recent years, there has been a demand for assessments that provide more actionable 

and fine-grained information about students’ knowledge, skills and understandings that can 
be used to inform teaching and learning activities.

• Learning progressions are one type of cognitive learning model that can be used to develop 
assessment systems, and these models describe one or more paths of skill acquisition 
within a domain (Simon, 1995; Alonzo & Steedle, 2009).

• Learning progressions-based assessments can benefit teachers and students by:
1. Allowing teachers to see where their students are within the progression, and
2. Offering recommendations for precursor skills to focus on if learning targets have not yet been 

mastered and successor skills when learning targets have been mastered.



Research Purpose
• In the present study, we will demonstrate an empirical method to learning 

progression validation using diagnostic classification models (DCMs; also called 
cognitive diagnosis models).

• The method is applied in the context of the Pathways for Instructionally Embedded 
(PIE) assessment system, a Competitive Grants for State Assessments funded project 
aimed at developing a proof-of-concept innovative assessment model based on 
learning progressions (known as learning pathways).



PIE Learning Pathway View



Item Field Test
• Held from March 4 – March 22, 2024 in 5th grade math classrooms in Missouri.

• A total of 1,708 5th grade students participated in the item field test. 

• Students were tested on all 3 pathway levels of 2 learning pathways as well as 
the third pathway level of a selected third learning pathway.

• Sample size for each standard ranged from 76 to 203 students.



Study Context and Research Question
• We are interested in answering the following research question:

Is the hierarchical structure proposed for the PIE learning pathways 
empirically supported by evidence obtained using a diagnostic modeling 
framework?



Diagnostic classification models
• DCMs describe a family of multidimensional psychometric models that define 

mastery on multiple latent variables or skills of interest, presented in terms of a 
mastery profile (Rupp et al., 2010).

• DCMs provide many benefits when used for calibration and scoring purposes, 
including:

1. Supporting instruction by reporting fine-grained results at the skill level. 
2. Testing different learning progression structures. 

• Different parameterizations can be defined to reflect different assumptions about 
how the items and skills are related.



LCDM and HDCM parameterizations 
• In the present study, we consider two parameterizations:

1. Log-Linear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009)
2. Hierarchical diagnostic classification model (HDCM; Templin & Bradshaw, 2014)

• The LCDM is a general DCM that contains all possible mastery profiles.

• The HDCM is a constrained DCM that restricts the skill space to only contain 
mastery profiles that are compatible with a proposed skill hierarchy.



Methods: Empirical evaluation of learning progressions
• Thompson and Nash (2022) outline a DCM-based diagnostic framework for 

empirically evaluating learning progressions by estimating and comparing a full 
model and a reduced model. 

• Full model: an unconstrained LCDM
• Reduced model: an HDCM that depicts the proposed hierarchical structure of the 

learning progression 

• Because the HDCM is nested within an LCDM, we can directly compare whether the 
exclusion of unallowed mastery profiles in the HDCM substantially impacts the 
model fit.



Methods: Model fit
• Model fit can be evaluated in terms of absolute fit and relative fit. 

• To assess absolute fit, we computed posterior predictive model checks at the 
model-level for the raw score distribution, and we report posterior predictive p-
values (ppp-values; e.g. Thompson, 2024).

• To assess relative fit, we used to information criterion:
1. Leave-one-out cross validation (LOO; Vehtari, Gelman, & Gabry, 2017)
2. Widely applicable information criterion (WAIC; Watanabe, 2010)



Results: Absolute fit
• Adjusted ppp-values were computed using the Holm correction (Holm, 1979) 

to control for family-wise error rates associated with testing of multiple 
models across the 25 learning pathways.

• Adequate model fit was demonstrated for 21 (84%) of the 25 learning 
pathways when fit using an LCDM.

• Adequate model fit was demonstrated for 20 (80%) of the 25 learning 
pathways when fit using an HDCM.



Results: Relative Fit
• Models with poor fit were not included in the model comparison approach.

• We concluded a significant difference in fit if the absolute difference between 
competing models was greater than 2.5 times the standard error of the difference 
(Bengio & Grandvalet, 2004).

• The HDCM model was the overwhelming favorite and was preferred in 19 of the 21 
evaluated learning pathways.



Takeaways and Next Steps
• More complex skill acquisition pathway designs

• We assumes a strict hierarchy of pathway level mastery in the PIE assessment system.
• Future applications may consider more complex skill acquisition pathways (i.e. 

alternate pathways)

• Adaptive testing environments
• Customized assessment for each student based on their current needs while 

simultaneously minimizing testing time.



Email questions to Auburn 
Jimenez at 
auburn.jimenez@ku.edu

THANK YOU!
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